Science News
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Science News
Your Daily Science Source
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

We Just Got The Most Detailed View of an Exoplanet Atmosphere Yet – And It’s Active

November 26, 2022 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Google+
Share on Pinterest
Share on LinkedIn
Share on Facebook
Share on Twitter
Share on Google+
Share on Pinterest
Share on LinkedIn

WASP-39b, a gas giant about 700 light-years away, is turning out to be quite the exoplanetary treasure.

Earlier this year, WASP-39b was the subject of the first-ever detection of carbon dioxide in the atmosphere of a planet outside the Solar System.

Now, an in-depth analysis of data from the James Webb Space Telescope (JWST) has given us an absolute goldmine of information: the most detailed look at an exoplanet atmosphere yet.

The results include information about WASP-39b’s clouds, the first-ever direct detection of photochemistry in an exoplanet atmosphere, and a nearly complete inventory of the atmosphere’s chemical contents that reveals tantalizing hints of the exoplanet’s formation history.

These epic discoveries have been published in five papers in Nature, and pave the way for the eventual detection of the chemical signatures of life outside the Solar System.

“These early observations are a harbinger of more amazing science to come with JWST,” says astrophysicist Laura Kreidberg, director of the Max Planck Institute for Astronomy in Germany.

“We put the telescope through its paces to test the performance, and it was nearly flawless – even better than we hoped.”

Since the first exoplanets were discovered in the early 1990s, we’ve sought to know more about these worlds orbiting alien stars.

But the challenges have been steep ones. Exoplanets can be extremely small and are extremely distant. We’ve never even seen most of them: We only know of their existence based on the effect they have on their host stars.

One of these effects occurs when the exoplanet passes between us and the star, an event known as a transit. This causes the starlight to slightly dim; periodic dimming events suggest the presence of an orbiting body. We can even tell how big that orbiting body is, based on the dimming and gravitational effects on the star.

And there’s something else we can tell, based on transit data. As starlight passes through the atmosphere of the transiting exoplanet, it changes. Some wavelengths on the spectrum are dimmed or brightened, depending on how molecules in the atmosphere absorb and re-emit light.

The signal is faint, but with a powerful enough telescope, and a stack of transits, the changing absorption and emission features on the spectrum can be decoded to determine the contents of an exoplanet’s atmosphere.

JWST is the most powerful space telescope ever launched. With three of its four instruments, it obtained detailed infrared spectra from the star WASP-39. Scientists then got to work analyzing the colorful codes.

First up was a census of the molecules present in WASP-39b’s atmosphere. In addition to the aforementioned carbon dioxide, the researchers detected water vapor, sodium, and carbon monoxide. There was no detection made of methane, implying that the metallicity of WASP-39b is higher than that of Earth.

The abundance of these elements is also revealing. In particular, the ratio of carbon to oxygen suggests that the exoplanet formed much farther from its host star than its current close-in position, occupying a four-day orbit. And modeling and observation data suggest that the exoplanet’s sky is populated by broken clouds – not of water, but of silicates and sulfites.

Finally, the observations revealed the presence of a compound called sulfur dioxide. Here in the Solar System, on rocky worlds such as Venus and Jovian moon Io, sulfur dioxide is the result of volcanic activity. But on gas worlds, sulfur dioxide has a different origin story: It’s produced when hydrogen sulfide is broken down by light into its constituent parts, and the resulting sulfur is oxidized.

Photon-induced chemical reactions are known as photochemistry, and they have implications for habitability, the stability of an atmosphere, and the formation of aerosols.

WASP-39b, to be clear, is not likely to be habitable to life as we know it for a whole bunch of reasons, including but not limited to its scorching temperature and gaseous makeup, but the detection of photochemistry is one that has implications for atmospheric studies of other worlds, and understanding the evolution of WASP-39b itself.

Planetary scientists have been gearing up for years for the insights into atmospheres that JWST was expected to provide. With the first detailed exoplanet atmosphere analysis, it seems that the space telescope is going to live up to its promise.

In addition, the teams involved in this research are preparing documentation so other scientists can apply their techniques to future JWST exoplanet observations.

We may not detect the signatures of life in an exoplanet atmosphere with JWST – perhaps an even more powerful telescope will be required to deliver that level of fine detail – but with the analysis of WASP-39b, that discovery is feeling ever more tantalizingly within grasp.

“Data like these,” says astronomer Natalie Batalha of the University of California Santa Cruz, “are a game changer.”

The research will be published Nature and can be read in preprints here, here, here, here, and here.

This article was originally published by Sciencealert.com. Read the original article here.
Share on Facebook
Share on Twitter
Share on Google+
Share on Pinterest
Share on LinkedIn

Products You May Like

Articles You May Like

There’s a ‘Lost City’ Deep in The Ocean, And It’s Unlike Anything We’ve Ever Seen
Incredible Footage Shows Planets Circling a Star Light-Years Away
Black Swans Could Be Entirely Wiped Out by a Single Virus, Scientists Warn
Intriguing Meteorite From Mars Reveals ‘Huge Organic Diversity’, Scientists Say
Scientists Reveal The Most Distant Galaxy We’ve Ever Found

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Follow us on Facebook
Follow us on Twitter
Follow us on Google+
Follow us on LinkedIn
Follow us on Pinterest
Follow us on Instagram
Follow us on YouTube

Recent Articles

  • New Prototype Device Generates Hydrogen From Untreated Seawater
  • Wildfire Destruction in The Western US Has Doubled in Just 10 Years
  • Scientist Accidentally Discovers The Oldest Brain of Any Vertebrate
  • Ancient Goo Spills The Secrets of How The Egyptians Mummified Their Dead
  • Embers of an Ancient Inferno Pinpoint The Worst Extinction in Earth’s History
  • Incredible ‘Fairy’ Robot Sails on The Breeze Like a Floating Dandelion
  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness
  • AI Predicts We’ll Breach Our Climate Goal in Just 10 Years
  • A Mysterious Whirlpool Appeared Over Hawaii, And It Could Be Because of SpaceX
  • Scientists Reveal The Most Precise Map of All The Matter in The Universe

Space

  • Stunning Green Comet Will Be Closest to Earth Today, at Peak Brightness
  • A Mysterious Whirlpool Appeared Over Hawaii, And It Could Be Because of SpaceX
  • Scientists Reveal The Most Precise Map of All The Matter in The Universe
  • Incredible Footage Shows Planets Circling a Star Light-Years Away
  • The Mysterious Asymmetry of Jupiter’s Asteroids May Finally Be Explained

Physics

  • This Physicist Says Electrons Spin in Quantum Physics After All. Here’s Why
  • Physicists Break Record Firing a Laser Down Their University Corridor
  • Scientists Have Built a Macroscopic Tractor Beam Using Laser Light
  • Firing a Laser Into The Sky Can Divert Lightning, Experiment Shows
  • Mysterious Quantum Phenomenon Lets Us Peek Inside an Atom’s Heart

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Archives

  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022

Recent Posts

  • New Prototype Device Generates Hydrogen From Untreated Seawater
  • Wildfire Destruction in The Western US Has Doubled in Just 10 Years
  • Scientist Accidentally Discovers The Oldest Brain of Any Vertebrate
  • Ancient Goo Spills The Secrets of How The Egyptians Mummified Their Dead
  • Embers of an Ancient Inferno Pinpoint The Worst Extinction in Earth’s History

Copyright © 2023 by Science News. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.