Science News
  • Home
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Skip to content
Science News
Your Daily Science Source
  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video
  • Contact Us
    • About us
    • Privacy Policy
    • Terms and Conditions
    • Amazon Disclaimer
    • DMCA / Copyrights Disclaimer
Space

A Star Was Caught Swallowing a Planet in an Astronomical First

May 4, 2023 by admin 0 Comments

Share on Facebook
Share on Twitter
Share on Google+
Share on Pinterest
Share on LinkedIn
Share on Facebook
Share on Twitter
Share on Google+
Share on Pinterest
Share on LinkedIn

For the first time, astronomers have identified the flare of light as a dying star engulfs and destroys one of its orbiting worlds.

Although this phenomenon has long been theorized, finally observing it in action will help astronomers figure out what happens to a planetary system as the star enters its dramatic death throes, puffing up to hundreds of times its original size and swallowing everything in its path, before ejecting its outer material and collapsing down into a hotly glowing stellar remnant.

Previous observations caught the stages just before and just after one of these planetary engulfments, but this is the first time the act has been seen, just 12,000 light-years from Earth. There, a star rapidly increased in brightness by a factor of 100 before rapidly fading, shining with an excess of bright, long-lived infrared light.

This is consistent with models that describe what will happen at the end of the Sun’s life and gives information that scientists can use to construct more detailed predictions about the end days for our little corner of the Milky Way galaxy.

“We are seeing the future of the Earth,” says astrophysicist Kishalay De of MIT’s Kavli Institute for Astrophysics and Space Research. “If some other civilization was observing us from 10,000 light-years away while the Sun was engulfing the Earth, they would see the Sun suddenly brighten as it ejects some material, then form dust around it, before settling back to what it was.”

The death of a star like the Sun is a pretty wild process. Observations of other stars in the Milky Way at various stages of their lives have shown us how it plays out.

Three suns representing the three stages of growth and enveloping of a planet
A planet orbits its star (left), which expands over time, affecting the planet’s orbit, eventually growing until the interaction produces detectable changes in light (International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld)

As the star runs out of hydrogen fuel to burn in its core, the delicate balance between the outward pressure of fusion and the inward pressure of gravity starts to unravel.

The core starts to contract, bringing more hydrogen from the star’s outer layers toward the center, concentrating in a shell around the core. Because of the heat and pressure, this hydrogen shell starts to fuse, generating extra heat that puffs the star’s outer layers out to up to hundreds of times its original size. But the very outer layers, more tenuous than before, cool towards the redder end of the spectrum. This is what is known as a red giant.

The star will engulf anything in the path of that expanding outer material. Here in the Solar System, this process is expected to take place in a few billion years, with the Sun predicted to expand out as far as Mars‘s orbit, swallowing Mercury, Venus, and Earth on the way.

De and his colleagues didn’t set out looking for a dying star chowing down on its planets. Rather, De was combing through data collected by the Zwicky Transient Facility, which studies the sky in optical and infrared wavelengths, looking for binary stars on such close orbits that one of them slurps material from the other, a process that creates flares of light.

What they actually found was something else entirely.

“One night, I noticed a star that brightened by a factor of 100 over the course of a week, out of nowhere,” De says. “It was unlike any stellar outburst I had seen in my life.”

A closer look using data from the optical and infrared Keck Observatory to examine the object’s chemical composition revealed more strangeness. The star showed signs of elements – such as titanium oxide and vanadium oxide – more consistent with a cool environment, not the hot hydrogen and helium you’d expect from stars swapping plasma.

Further observations with the infrared Palomar Observatory confirmed it. Whatever was going on with the outburst, named ZTF SLRN-2020, it was not a binary star, which meant that the outburst had to be something else.

A look at the scientific literature showed that the way the light bloomed, died, and lingered as cool material glowing infrared was consistent with a type of explosion known as a red nova, the result of a binary star colliding.

But the energy it produced was much, much smaller than you’d expect from a red nova; around a thousandth of the energy, in fact. And that was the final piece of the puzzle.

“That means that whatever merged with the star has to be 1,000 times smaller than any other star we’ve seen,” De says. “And it’s a happy coincidence that the mass of Jupiter is about 1/1,000 the mass of the Sun. That’s when we realized: This was a planet, crashing into its star.”

According to the team’s analysis, the planet would have had a maximum mass of about 10 times the mass of Jupiter, being engulfed by and falling towards the core of an expanding red giant.

As the star swallowed the planet, its expanding outer envelope continued to cool, forming a dust cloud around the star that gave the long-term infrared signature observed by the Palomar Observatory.

This, the researchers say, constitutes a “missing link” in our understanding of the evolution of planetary systems. They have named this kind of event “subluminous red novae”, and believe that ZTF SLRN-2020 can help us understand the effect planetary engulfment can have on the brightness, chemical composition, and rotation rate of late-stage stars.

They estimate that subluminous red novae occur between 0.1 and several times a year. Now that we know what they can look like, we may find many more.

“For decades, we’ve been able to see the before and after,” De says. “Before, when the planets are still orbiting very close to their star, and after, when a planet has already been engulfed, and the star is giant. What we were missing was catching the star in the act, where you have a planet undergoing this fate in real time. That’s what makes this discovery really exciting.”

The research has been published in Nature.

This article was originally published by Sciencealert.com. Read the original article here.
Share on Facebook
Share on Twitter
Share on Google+
Share on Pinterest
Share on LinkedIn

Products You May Like

Articles You May Like

A Strange Thing Happens When You Read Around Background Noise
Lab-Grown Meat Has a Big Problem Very Few People Know About
NASA Had a Plan For Rescuing Space Shuttle Astronauts Using a Big Fabric Ball
‘Evil Eye’ Galaxy: The Sinister Glare Can Finally Be Explained
The Temptation to Open Pandora’s Box Could Set Us Apart From Other Apes

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Follow us on Facebook
Follow us on Twitter
Follow us on Google+
Follow us on LinkedIn
Follow us on Pinterest
Follow us on Instagram
Follow us on YouTube

Recent Articles

  • Neanderthals May Have Been The First To Carefully Concoct This Substance
  • A Strange Thing Happens When You Read Around Background Noise
  • Discovery of More Than 50 Tweezers Reveals Ancient Roman Obsession With Hair Removal
  • Did Dinosaurs ‘See Through’ Each Other’s Eyes? New Research Provides Insight
  • From Kitchen Pest to Scientific Hero: The Tremendous Research Value of Fruit Flies
  • This Unique Plant Turns Carnivorous When The Mood Strikes
  • Hundreds of Mystery Structures Found at The Heart of The Milky Way
  • Wild Study Shows Everything in The Universe Will Eventually Evaporate
  • Your Dog Loves Eating Grass, But Not For The Reasons You Think
  • The Y Chromosome Is Vanishing. A New Sex Gene Could Be The Future of Men

Space

  • Hundreds of Mystery Structures Found at The Heart of The Milky Way
  • Wild Study Shows Everything in The Universe Will Eventually Evaporate
  • Geyser Seen Spraying 6,000 Miles Into Space From Saturn’s Moon
  • NASA Had a Plan For Rescuing Space Shuttle Astronauts Using a Big Fabric Ball
  • ‘Evil Eye’ Galaxy: The Sinister Glare Can Finally Be Explained

Physics

  • World’s First X-Ray of a Single Atom Reveals Chemistry on The Smallest Level
  • Adding a Touch of Gold to Our Wine Could Make For a More Pleasant Drop
  • Signs of a Critical Imbalance in Physics Seen in The Arrangements of Galaxies
  • First Signs of Rare Higgs Boson Decay Discovered by Physicists
  • The Strange Mystery of Champagne Bubbles Can Finally Be Explained

Archives

  • June 2023
  • May 2023
  • April 2023

Categories

  • Environment
  • Humans
  • Nature
  • Physics
  • Space
  • Tech
  • Video

Useful Links

  • Contact Us
  • About us
  • Privacy Policy
  • Terms and Conditions
  • Amazon Disclaimer
  • DMCA / Copyrights Disclaimer

Archives

  • June 2023
  • May 2023
  • April 2023

Recent Posts

  • Neanderthals May Have Been The First To Carefully Concoct This Substance
  • A Strange Thing Happens When You Read Around Background Noise
  • Discovery of More Than 50 Tweezers Reveals Ancient Roman Obsession With Hair Removal
  • Did Dinosaurs ‘See Through’ Each Other’s Eyes? New Research Provides Insight
  • From Kitchen Pest to Scientific Hero: The Tremendous Research Value of Fruit Flies

Copyright © 2023 by Science News. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms of Use and Privacy Policy.

Powered by WordPress using DisruptPress Theme.